Statistical modeling and machine learning involving large data sets and challenging computation. Data pipelines and data bases, big data tools, sequential algorithms and subsampling methods for massive data sets, efficient programming for multi-core and cluster machines, including topics drawn from GPU programming, cloud computing, Map/Reduce and general tools of distributed computing environments. Intense use of statistical and data manipulation software will be required. Data from areas such as astronomy, genomics, finance, social media, networks, neuroscience. Instructor consent required. Prerequisite: Statistics 521L, 523L; Statistics 532 (or co-registration).