Machine Learning Approaches to Sentiment Analysis

Background

- Brookfield Public Securities: financial institution that invests in global alternative assets.
- Teams are comprised of investment analysts
- Main goal is to digest news and make buy or sell recommendations regarding a stock

Problem:

- Difficult to stay on top of news and historical trends of hundreds of companies in a respective universe
- Analysts are very good at analyzing the current news around a company, but are limited in information retention

Objective:

- Build a sentiment analysis tool that can classify financial news articles based on polarity (positive, negative, neutral)
- Enable high-level, macro news digestion at scale

Methods Feature Extraction Modeling Preprocess **PIPELINE** Clean Data **Tokenize** Classic ML Positive **Text Stop Words** BoW Neutral **Ensemble ML** CV/Bootstrap Stemming TOKENIZE BoW = count(t, d)Sentence: the marked crashed TF-IDF = BoW x $[log(N+1/df_t+1) + 1]$ Unigram: [the, market, crashed] - t = term. d = document **Bigram:** [the market, market crashed] N = total # of documents Combo: Unigram + Bigram $df_t = \#$ of docs. where term t occurs

Data

Labeled financial news data aggregated from two sources:

- Financial Phrase Bank (FPB)
- 2017 Semantic Workshop on Semantic Evaluation (SemEval)

EDA: Word Clouds

Results

Tokenization:

- TF-IDF outperformed BoW in every model setup
- Tokenizing at the Bigram level resulted in the lowest fold accuracy across all models, however, this may be due to the limited training corpus used

Classifier:

- Linear SVC and XGBoost had highest test accuracy
- Confusion Matrix displays difficulty in accurately predicting negative sentiment for Linear SVC

TF-IDF Uni & Comb. are the Best Performers

Model	Tokenization	Test Accuracy ¹	Bootstrap Test Accuracy ²
Linear SVC	TF-IDF, Combo	82.4 %	81.5 ± 1.8 %
XGBoost	TF-IDF, Uni	81.3 %	80.0 ± 1.7 %
Comp. NB	TF-IDF, Combo	79.7 %	78.5 ± 1.9 %
Mult NB	TF-IDF, Combo	78.8 %	77.8 ± 2.0 %
Random Forest	TF-IDF, Uni	77.4 %	76.4 ± 2.1 %
k-NN	TF-IDF, Uni	77.4 %	75.1 ± 2.8 %

Notes: 1.) Test Accuracy is computed from 80-20 Train-Test Split 2.) Bootstrap Test Accuracy is the 95% CI for Out-of-Bag Accuracy

Linear SVC TF-IDF Combo

Application

- Overview: once the optimal sentiment analysis model was selected, measures were taken to integrate this model into a tool that can be used by the investment team.
- Workflow:
- News articles are queried from Newcatcher API
- Data is cleaned, processed, and transformed in Python
- ML sentiment model outputs a predicted sentiment class for each article
- Sentiment labels and article metadata are stored in a MySQL database
- Results are displayed in an interactive Tableau dashboard

Dashboard Example: Duke Energy

Conclusion

- TF-IDF appears to be the optimal method to transform text data; no statistical evidence to conclude that one classifier outperformed the others.
- Next Steps:
- Apply deep learning methods such as LSTM and BERT, and compare results with using word embedding and word2vec
- Expand analysis for aspect-based sentiment analysis for long text
- Analyze how stock prices fluctuate with changes in sentiment