Machine Learning Approaches to Sentiment Analysis

Background
- Brookfield Public Securities: financial institution that invests in global alternative assets.
 - Teams are comprised of investment analysts
 - Main goal is to digest news and make buy or sell recommendations regarding a stock
- Problem: Difficult to stay on top of news and historical trends of hundreds of companies in a respective universe.
 - Analysts are very good at analyzing the current news around a company, but are limited in information retention.
- Objective: Build a sentiment analysis tool that can classify financial news articles based on polarity (positive, negative, neutral).
 - Enable high-level, macro news digest at scale

Data
- Labeled financial news data aggregated from two sources:
 - Financial Phrase Bank (FPB)
 - 2017 Semantic Workshop on Semantic Evaluation (SemEval)

Results
- Tokenization:
 - TF-IDF outperformed BoW in every model setup
 - Tokenizing at the Bigram level resulted in the lowest fold accuracy across all models, however, this may be due to the limited training corpus used.
- Classifier:
 - Linear SVC and XGBoost had highest test accuracy
 - Confusion Matrix displays difficulty in accurately predicting negative sentiment for Linear SVC

Methods
- **Preprocess**
 - Stop Words
 - Stemming
- **Feature Extraction**
 - BoW
 - TF-IDF
- **Modeling**
 - Ensemble ML CV/Bootstrap

Application
- **Overview**: Once the optimal sentiment analysis model was selected, measures were taken to integrate this model into a tool that can be used by the investment team.
- **Workflow**:
 - News articles are queried from Newscatcher API.
 - Data is cleaned, processed, and transformed in Python.
 - ML sentiment model outputs a predicted sentiment class for each article.
 - Sentiment labels and article metadata are stored in a MySQL database.
 - Results are displayed in an interactive Tableau dashboard.

Conclusion
- TF-IDF appears to be the optimal method to transform text data; no statistical evidence to conclude that one classifier outperformed the others.
- **Next Steps**:
 - Apply deep learning methods such as LSTM and BERT, and compare results with using word embedding and word2vec.
 - Expand analysis for aspect-based sentiment analysis for long text.
 - Analyze how stock prices fluctuate with changes in sentiment.

EDA: Word Clouds
- Negative Articles
- Positive Articles