Machine Learning A

roaches to Sentiment Analysis

Background

* Brookfield Public Securities: financial institution that invests in
global alternative assets.

- Teams are comprised of investment analysts

- Main goal is to digest news and make buy or sell
recommendations regarding a stock

*  Problem:

- Difficult to stay on top of news and historical trends of hundreds
of companies in a respective universe

- Analysts are very good at analyzing the current news around a
company, but are limited in information retention

* Objective:
- Build a sentiment analysis tool that can classify financial news
articles based on polarity (positive, negative, neutral)

- Enable high-level, macro news digestion at scale
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Labeled financial news data aggregated from two sources:
- Financial Phrase Bank (FPB)
- 2017 Semantic Workshop on Semantic Evaluation (SemEval)
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Fold Accuracy

Tokenization:

TF-IDF outperformed BoW in every model setup
Tokenizing at the Bigram level resulted in the lowest

fold accuracy across all models, however, th
be due to the limited training corpus used

Classifier:

Linear SVC and XGBoost had highest test accuracy

Confusion Matrix displays difficulty in accurately
predicting negative sentiment for Linear SVC
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Tokenization

Linear SVC  TF-IDF, Combo 824 % 815+1.8%

is may XGBoost TF-IDF, Uni 81.3 % 800+ 1.7%
Comp. NB TF-IDF, Combo 79.7 % 785 +1.9%

Mult NB TF-IDF, Combo 788 % 778+2.0%

Random Forest TF-IDF, Uni 774 % 764 +21%

k-NN TF-IDF, Uni 774 % 751 +2.8%

Notes: 1.) Test Accuracy is computed from 80-20 Train-Test Split
2.) Bootstrap Test Accuracy is the 95% CI for Out-of-Bag Accuracy

TF-IDF Uni & Comb. are the Best Performers
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Predicted Sentiment

Application

Overview: once the optimal sentiment analysis model was selected,
measures were taken to integrate this model into a tool that can be used by
the investment team.

Workflow:
- News articles are queried from Newcatcher API
- Data is cleaned, processed, and transformed in Python
- ML sentiment model outputs a predicted sentiment class for each article
- Sentiment labels and article metadata are stored in a MySQL database
- Results are displayed in an interactive Tableau dashboard
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Conclusion

TF-IDF appears to be the optimal method to transform text data; no
statistical evidence to conclude that one classifier outperformed the others.

Next Steps:

- Apply deep learning methods such as LSTM and BERT, and compare
results with using word embedding and word2vec

- Expand analysis for aspect-based sentiment analysis for long text
- Analyze how stock prices fluctuate with changes in sentiment

PhDPosters.com

Your Research Poster. Prinled For Less





