Yunran Chen

Yunran Chen


Employment Info

PhD Student, Statistics Department
Duke University
August 2019-Present

Master's Thesis

Testing Between Different Poisson Mixtures with Applications in Neuroscience

We propose a hypothesis testing for different types of stochastic order of mixture distributions (PRML classifier) and a hypothesis testing for screening out data with mixture distributions (PRML filter), in a Bayesian framework using a recursive algorithm called predictive recursion marginal likelihood (PRML) algorithm. Of particular interest is the special case of testing between different types of Poisson mixtures and testing Poisson distribution versus Poisson mixtures. The first testing procedure applies Laplace approximation coupled with optimization algorithm. This testing helps neuroscientists to classify the activation patterns that a single neuron exhibits when preserving information from multiple stimuli. The second testing aims to screen out over-dispersed data to boost the scientific information. Simulation shows the new classifier and filter outperform the previous testing especially for over-dispersed data. We apply the PRML classifier on the analysis of inferior colliculus neurons filtered by PRML filter. We show the PRML classifier emphasizes second order stochasticity. We present empirical evidence that the PRML filter contributes to avoid mistaking trial-to-trial variation as second order stochasticity.


I find it fascinating to explore and explain the world using statistical models and methods. Broadly, my research interests are in statistical modeling, computing, and applications. Through a Ph.D. program in statistics, I would like to focus on social network, nonparametric Bayesian and Bayesian statistics, and their applications in social science and neuroscience.

Selected Grants

Spatial Information Codes awarded by National Institutes of Health (Graduate Student). 2017 to 2022