Global-Local Priors for Small Area Estimation

Friday, September 22, 2017 - 3:30pm

Malay Ghosh, University of Florida


Small area estimation is becoming increasingly popular for survey statisticians. One very important program is Small Area Income and Poverty Estimation undertaken by the United States Bureau of the Census, which aims at providing estimates related to income and poverty based on American Community Survey data at the state level and even at lower levels of geography. This article introduces global-local shrinkage priors for random effects in small area estimation to capture wide area level variation when the number of small areas is very large. These priors employ two levels of parameters, global and local parameters, to express variances of area-specific random effects so that both small and large random effects can be captured properly. We show via simulations and data analysis that use of the global-local priors can improve estimation results in most cases.

Keywords:  Bayesian model, Fay-Herriot model, poverty rate, spike-and-slab prior

Seminars generally take place in 116 Old Chemistry Building on Fridays from 3:30 - 4:30 pm. For additional information contact: or phone 919-684-8029. Sorry, but we do not have reprints available. Please feel free to contact the authors by email for follow-up information, articles, etc. Reception following seminar in 211 Old Chemistry

Old Chemistry 116

Location Info